Self‐Mixed Biphasic Liquid Metal Composite with Ultra‐High Stretchability and Strain‐Insensitivity for Neuromorphic Circuits

Author:

Lee Do Hoon1,Lim Taesu2,Pyeon Jeongsu3,Park Hyunmin2,Lee Sang‐Won1,Lee Seungkyu2,Kim Wonsik2,Kim Min2,Lee Jeong‐Chan2,Kim Do‐Wan1,Han Seungmin2,Kim Hyoungsoo3,Park Steve24ORCID,Choi Yang‐Kyu1ORCID

Affiliation:

1. School of Electrical Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea

2. Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea

3. Department of Mechanical Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea

4. KAIST Institute for Health Science and Technology 291 Daehak‐ro Yuseong‐gu Daejeon 34141 Republic of Korea

Abstract

AbstractNeuromorphic circuits that can function under extreme deformations are important for various data‐driven wearable and robotic applications. Herein, biphasic liquid metal particle (BMP) with unprecedented stretchability and strain‐insensitivity (ΔR/R0 = 1.4@ 1200% strain) is developed to realize a stretchable neuromorphic circuit that mimics a spike‐based biologic sensory system. The BMP consists of liquid metal particles (LMPs) and rigid liquid metal particles (RLMPs), which are homogeneously mixed via spontaneous solutal‐Marangoni mixing flow during coating. This permits facile single step patterning directly on various substrates at room temperature. BMP is highly conductive (2.3 × 106 S/m) without any post activation steps. BMP interconnects are utilized for a sensory system, which is capable of distinguishing variations of biaxial strains with a spiking neural network, thus demonstrating their potential for various sensing and signal processing applications.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3