Affiliation:
1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
2. Department of Chemistry Functional Materials Technical University of Berlin Sekretariat BA 2 4010623 Hardenbergstr Berlin Germany
3. Department of Materials and Environmental Chemistry Stockholm University Stockholm 10691 Sweden
4. School of Physics and Astronomy Cardiff University Queen's Building, The Parade, Wales CF24 3AA Cardiff CF10 3AT UK
Abstract
AbstractGradients play a pivotal role in membrane technologies, e.g., osmotic energy conversion, desalination, biomimetic actuation, selective separation, and more. In these applications, the compositional gradients are of great relevance for successful function implementation, ranging from solvent separation to smart devices; However, the construction of functional gradient in membranes is still challenging both in scale and directions. Inspired by the specific function‐related, graded porous structures in glomerular filtration membranes, a general approach for constructing gradient covalent organic framework membranes (GCOMx) applying poly (ionic liquid)s (PILs) as template is reported here. With graded distribution of highly porous covalent organic framework (COF) crystals along the membrane, GCOMx exhibts an unprecedented asymmetric solvent transport when applying different membrane sides as the solvent feed surface during filtration, leading to a much‐enhanced flux (10–18 times) of the “large‐to‐small” pore flow comparing to the reverse direction, verified by hydromechanical theoretical calculations. Upon systematic experiments, GCOMx achieves superior permeance in nonpolar (hexane ≈260.45 LMH bar−1) and polar (methanol ≈175.93 LMH bar−1) solvents, together with narrow molecular weight cut‐off (MWCO, 472 g mol−1) and molecular weight retention onset (MWRO, <182 g mol−1). Interestingly, GCOMx shows significant filtration performance in simulated kidney dialysis, revealing great potential of GCOMx in bionic applications.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Program of Shanghai Academic Research Leader
Natural Science Foundation of Shanghai Municipality
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献