An Active Halide Catholyte Boosts the Extra Capacity for All‐Solid‐State Batteries

Author:

Song Zhenyou1,Dai Yiming1,Wang Tengrui1,Yu Qian1,Ye Xiaolu1,Wang Likuo1,Zhang Yini1,Wang Suntongxing1,Luo Wei1ORCID

Affiliation:

1. Institute of New Energy for Vehicles School of Materials Science and Engineering Tongji University Shanghai 201804 China

Abstract

AbstractReplacing flammable organic liquid electrolytes with nonflammable solid electrolytes (SEs) in lithium batteries is crucial for enhancing safety across various applications, including portable electronics, electric vehicles, and scalable energy storage. Since typical cathode materials do not possess superionic conductivity, Li‐ion conduction in the cathode predominantly relies on incorporating a significant number of SEs as additives to form a composite cathode, which substantially compromises the energy density of solid‐state lithium batteries. Here, a halide SE, Li3VCl6 is demonstrated, which not only exhibits a decent Li+ conductivity, but more importantly, delivers a highly reversible capacity of approximately 80 mAh g−1 with an average voltage of 3 V versus Li+/Li. The ionic conductivity of Li3VCl6 experiences marginal fluctuations upon electrochemical lithiation/delithiation, as its prototypical solid‐solution reaction results solely in a reduction of lithium vacancy. When combined with the traditional LiFePO4 cathode, the active Li3VCl6 catholyte enables an impressive capacity of 217.1 mAh g−1LFP and about 50% increase in energy density compared with inactive catholytes. Harnessing the integrated mass of the catholyte—which can serve as an active material—presents an opportunity to boost the extra capacity, rendering it feasible in applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3