Mechanoluminescence and Photoluminescence Heterojunction for Superior Multimode Sensing Platform of Friction, Force, Pressure, and Temperature in Fibers and 3D‐Printed Polymers

Author:

Zheng Teng1ORCID,Runowski Marcin23ORCID,Martín Inocencio R.3ORCID,Soler‐Carracedo Kevin2ORCID,Peng Liang1,Skwierczyńska Małgorzata2ORCID,Sójka Małgorzata4ORCID,Barzowska Justyna5ORCID,Mahlik Sebastian5ORCID,Hemmerich Hanoch3,Rivera‐López Fernando6ORCID,Kulpiński Piotr7ORCID,Lavín Víctor3ORCID,Alonso Daniel3,Peng Dengfeng8ORCID

Affiliation:

1. School of Information and Electrical Engineering Hangzhou City University Hangzhou 310015 China

2. Faculty of Chemistry Adam Mickiewicz University Uniwersytetu Poznańskiego 8 Poznań 61‐614 Poland

3. Departamento de Física, IUdEA, IMN and MALTA Consolider Team Universidad de La Laguna San Cristóbal de La Laguna Apartado de Correos 456 Santa Cruz de Tenerife E‐38200 Spain

4. Department of Chemistry University of Houston Houston TX 77204 USA

5. Institute of Experimental Physics Faculty of Mathematics, Physics and Informatics University of Gdansk Wita Stwosza 57 Gdansk 80‐308 Poland

6. Departamento de Ingeniería Industrial Escuela Superior de Ingeniería y Tecnología Universidad de La Laguna San Cristóbal de La Laguna Apdo. 456 Santa Cruz de Tenerife E‐38200 Spain

7. Faculty of Material Technologies and Textile Design Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials Lodz University of Technology Żeromskiego 116 Lodz 90‐924 Poland

8. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China

Abstract

AbstractEndowing a single material with various types of luminescence, that is, exhibiting a simultaneous optical response to different stimuli, is vital in various fields. A photoluminescence (PL)‐ and mechanoluminescence (ML)‐based multifunctional sensing platform is built by combining heterojunctioned ZnS/CaZnOS:Mn2+ mechano‐photonic materials using a 3D‐printing technique and fiber spinning. ML‐active particles are embedded in micrometer‐sized cellulose fibers for flexible optical devices capable of emitting light driven by mechanical force. Individually modified 3D‐printed hard units that exhibit intense ML in response to mechanical deformation, such as impact and friction, are also fabricated. Importantly, they also allow low‐pressure sensing up to ≈100 bar, a range previously inaccessible by any other optical sensing technique. Moreover, the developed optical manometer based on the PL of the materials demonstrates a superior high‐pressure sensitivity of ≈6.20 nm GPa−1. Using this sensing platform, four modes of temperature detection can be achieved: excitation‐band spectral shifts, emission‐band spectral shifts, bandwidth broadening, and lifetime shortening. This work supports the possibility of mass production of ML‐active mechanical and optoelectronic parts integrated with scientific and industrial tools and apparatus.

Funder

Ministerio de Economía y Competitividad

Agencia Canaria de Investigación, Innovación y Sociedad de la Información

National Natural Science Foundation of China

Universidad de La Laguna

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3