In‐Situ‐Generated Electron‐Blocking LiH Enabling an Unprecedented Critical Current Density of Over 15 mA cm−2 for Solid‐State Hydride Electrolytes

Author:

Wei Yiqi1,Yang Yaxiong2,Chen Zichong1,Gao Panyu3,Ma Qihang1,Gao Mingxi1,Yan Chenhui1,Wu Zhijun2,Jiang Yinzhu1,Chen Jian2,Yu Xuebin3,Li Zhenglong2,Zhang Xin1,Liu Yongfeng1,Gao Mingxia1,Sun Wenping1,Pan Hongge12ORCID

Affiliation:

1. State Key Laboratory of Silicon Materials and School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China

2. Institute of Science and Technology for New Energy Xi'an Technological University Xi'an 710021 China

3. Department of Materials Science Fudan University Shanghai 200433 China

Abstract

AbstractLiBH4 is a promising solid‐state electrolyte (SE) due to its thermodynamic stability to Li. However, poor Li‐ion conductivities at room temperature, low oxidative stabilities, and severe dendrite growth hamper its application. In this work, a partial dehydrogenation strategy is adopted to in situ generate an electronic blocking layer dispersed of LiH, addressing the above three issues simultaneously. The electrically insulated LiH reduces the electronic conductivity by two orders of magnitude, leading to a 32.0‐times higher critical electrical bias for dendrite growth on the particle surfaces than that of the counterpart. Additionally, this layer not only promotes the Li‐ion conductance by stimulating coordinated rotations of BH4 and B12H122−, contributing to a Li‐ion conductivity of 1.38 × 10−3 S cm−1 at 25 °C, but also greatly enhances oxidation stability by localizing the electron density on BH4, extending its voltage window to 6.0 V. Consequently, this electrolyte exhibits an unprecedented critical current density (CCD) of 15.12 mA cm−2 at 25 °C, long‐term Li plating and stripping stability for 2700 h, and a wide temperature window for dendrite inhibition from −30 to 150 °C. Its Li‐LiCoO2 cell displays high reversibility within 3.0–5.0 V. It is believed that this work provides a clear direction for solid‐state hydride electrolytes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3