Anisotropic Excitons Reveal Local Spin Chain Directions in a van der Waals Antiferromagnet

Author:

Kim Dong Seob12,Huang Di13,Guo Chunhao4,Li Kejun5,Rocca Dario6,Gao Frank Y.12,Choe Jeongheon12,Lujan David12,Wu Ting‐Hsuan7,Lin Kung‐Hsuan7,Baldini Edoardo12,Yang Li8,Sharma Shivani7,Kalaivanan Raju7,Sankar Raman7,Lee Shang‐Fan7,Ping Yuan4,Li Xiaoqin12ORCID

Affiliation:

1. Department of Physics and Center for Complex Quantum Systems The University of Texas at Austin Austin TX 78712 USA

2. Center for Dynamics and Control of Materials and Texas Materials Institute The University of Texas at Austin Austin TX 78712 USA

3. MOE Key Laboratory of Advanced Micro‐Structured Materials, Shanghai Frontiers Science Center of Digital Optics Institute of Precision Optical Engineering, and School of Physics Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 China

4. Department of Chemistry and Biochemistry University of California Santa Cruz CA 95064 USA

5. Department of Physics University of California Santa Cruz CA 95064 USA

6. Laboratoire de Physique et Chimie Théoriques (LPCT) Université de Lorraine, UMR 7019 CNRS Nancy F‐54000 France

7. Institute of Physics Academia Sinica Taipei 11529 Taiwan

8. Department of Physics and Institute of Materials Science and Engineering Washington University St. Louis MO 63130 USA

Abstract

AbstractA long‐standing pursuit in materials science is to identify suitable magnetic semiconductors for integrated information storage, processing, and transfer. Van der Waals magnets have brought forth new material candidates for this purpose. Recently, sharp exciton resonances in antiferromagnet NiPS3 have been reported to correlate with magnetic order, that is, the exciton photoluminescence intensity diminishes above the Néel temperature. Here, it is found that the polarization of maximal exciton emission rotates locally, revealing three possible spin chain directions. This discovery establishes a new understanding of the antiferromagnet order hidden in previous neutron scattering and optical experiments. Furthermore, defect‐bound states are suggested as an alternative exciton formation mechanism that has yet to be explored in NiPS3. The supporting evidence includes chemical analysis, excitation power, and thickness dependent photoluminescence and first‐principles calculations. This mechanism for exciton formation is also consistent with the presence of strong phonon side bands. This study shows that anisotropic exciton photoluminescence can be used to read out local spin chain directions in antiferromagnets and realize multi‐functional devices via spin‐photon transduction.

Funder

Air Force Research Laboratory

Basic Energy Sciences

Welch Foundation

National Science Foundation

Ministry of Science and Technology, Taiwan

Academia Sinica

Brookhaven National Laboratory

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3