Hydrophobic Trinuclear Copper Cluster‐Containing Organic Framework for Synergetic Electrocatalytic Synthesis of Amino Acids

Author:

Li Ning1ORCID,Pan Chenliang2,Lu Guang3,Pan Houhe1,Han Yuesheng1,Wang Kang1,Jin Peng2,Liu Qingyun3,Jiang Jianzhuang1ORCID

Affiliation:

1. Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China

2. School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China

3. College of Chemical and Biological Engineering Shandong University of Science and Technology Qingdao 266590 China

Abstract

AbstractElectrocatalytic synthesis of amino acids provides a promising green and efficient pathway to manufacture the basic substances of life. Herein, reaction of 2,5‐perfluroalkyl‐terepthalohydrazide and tris(4‐µ2‐O‐carboxaldehyde‐pyrazolato‐N, N′)‐tricopper affords a crystalline trinuclear copper cluster‐containing organic framework, named F‐Cu3‐OF. Incorporation of abundant hydrophobic perfluroalkyl groups inside the channels of F‐Cu3‐OF is revealed to successfully suppress the hydrogen evolution reaction via preventing H+ cation with large polarity from the framework of F‐Cu3‐OF and in turn increasing the adsorption of other substrates with relatively small polarity like NO3 and keto acids on the active sites. The copper atoms with short distance in the trinuclear copper clusters of F‐Cu3‐OF enable simultaneous activization of NO3 and keto acids, facilitating the following synergistic and efficient C─N coupling on the basis of in situ spectroscopic investigations together with theoretical calculation. Combination of these effects leads to efficient electroproduction of various amino acids including glycine, alanine, leucine, valine, and phenylalanine from NO3 and keto acids with a Faraday efficiency of 42%–71% and a yield of 187–957 µmol cm−2 h−1, representing the thus far best performance. This work shall be helpful for developing economical, eco‐friendly, and high‐efficiency strategy for the production of amino acids and other life substances.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3