Selective Induction of Molecular Assembly to Tissue‐Level Anisotropy on Peptide‐Based Optoelectronic Cardiac Biointerfaces

Author:

Yao Ze‐Fan12ORCID,Kuang Yuyao1,Wu Hao‐Tian3,Lundqvist Emil4,Fu Xin5,Celt Natalie4,Pei Jian3ORCID,Yee Albert F.1,Ardoña Herdeline Ann M.1246ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering Samueli School of Engineering University of California Irvine CA 92697 USA

2. Department of Chemistry School of Physical Sciences University of California Irvine CA 92697 USA

3. Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China

4. Department of Biomedical Engineering Samueli School of Engineering University of California Irvine CA 92697 USA

5. Department of Materials Science and Engineering Samueli School of Engineering University of California Irvine CA 92697 USA

6. Sue & Bill Gross Stem Cell Research Center University of California Irvine CA 92697 USA

Abstract

AbstractThe conduction efficiency of ions in excitable tissues and of charged species in organic conjugated materials both benefit from having ordered domains and anisotropic pathways. In this study, a photocurrent‐generating cardiac biointerface is presented, particularly for investigating the sensitivity of cardiomyocytes to geometrically comply to biomacromolecular cues differentially assembled on a conductive nanogrooved substrate. Through a polymeric surface‐templated approach, photoconductive substrates with symmetric peptide‐quaterthiophene (4T)‐peptide units assembled as 1D nanostructures on nanoimprinted polyalkylthiophene (P3HT) surface are developed. The 4T‐based peptides studied here can form 1D nanostructures on prepatterned polyalkylthiophene substrates, as directed by hydrogen bonding, aromatic interactions between 4T and P3HT, and physical confinement on the nanogrooves. It is observed that smaller 4T‐peptide units that can achieve a higher degree of assembly order within the polymeric templates serve as a more efficient driver of cardiac cytoskeletal anisotropy than merely presenting aligned ‐RGD bioadhesive epitopes on a nanotopographic surface. These results unravel some insights on how cardiomyocytes perceive submicrometer dimensionality, local molecular order, and characteristics of surface cues in their immediate environment. Overall, the work offers a cardiac patterning platform that presents the possibility of a gene modification‐free cardiac photostimulation approach while controlling the conduction directionality of the biotic and abiotic components.

Funder

NHLBI Division of Intramural Research

NIH Office of the Director

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3