Wearable Coaxially‐Shielded Metamaterial for Magnetic Resonance Imaging

Author:

Zhu Xia12,Wu Ke12,Anderson Stephan W.23,Zhang Xin12ORCID

Affiliation:

1. Department of Mechanical Engineering Boston University Boston MA 02215 USA

2. Photonics Center Boston University Boston MA 02215 USA

3. Department of Radiology Boston University Chobanian & Avedisian School of Medicine Boston MA 02118 USA

Abstract

AbstractRecent advancements in metamaterials have yielded the possibility of a wireless solution to improve signal‐to‐noise ratio (SNR) in magnetic resonance imaging (MRI). Unlike traditional closely packed local coil arrays with rigid designs and numerous components, these lightweight, cost‐effective metamaterials eliminate the need for radio frequency cabling, baluns, adapters, and interfaces. However, their clinical adoption is limited by their low sensitivity, bulky physical footprint, and limited, specific use cases. Herein, a wearable metamaterial developed using commercially available coaxial cable, designed for a 3.0 T MRI system is introduced. This metamaterial inherits the coaxially‐shielded structure of its constituent cable, confining the electric field within and mitigating coupling to its surroundings. This ensures safer clinical adoption, lower signal loss, and resistance to frequency shifts. Weighing only 50 g, the metamaterial maximizes its sensitivity by conforming to the anatomical region of interest. MRI images acquired using this metamaterial with various pulse sequences achieve an SNR comparable or even surpass that of a state‐of‐the‐art 16‐channel knee coil. This work introduces a novel paradigm for constructing metamaterials in the MRI environment, paving the way for the development of next‐generation wireless MRI technology.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3