Tailoring the Plasticity of Topologically Close‐Packed Phases via the Crystals’ Fundamental Building Blocks

Author:

Luo Wei1,Xie Zhuocheng1,Zhang Siyuan2ORCID,Guénolé Julien34,Sun Pei‐Ling1,Meingast Arno5,Alhassan Amel6,Zhou Xuyang2,Stein Frank2,Pizzagalli Laurent7,Berkels Benjamin6,Scheu Christina2,Korte‐Kerzel Sandra1ORCID

Affiliation:

1. Institute for Physical Metallurgy and Materials Physics RWTH Aachen University Kopernikusstraße 14 52074 Aachen Germany

2. Max‐Planck‐Institut für Eisenforschung GmbH Max‐Planck‐Straße 1 40237 Düsseldorf Germany

3. CNRS Arts et Métiers ParisTech Université de Lorraine LEM3 Metz 57070 France

4. Labex Damas Université de Lorraine Metz 57070 France

5. Thermo Fisher Scientific De Schakel 2 Eindhoven 5651 GH The Netherlands

6. Institute for Advanced Study in Computational Engineering Science RWTH Aachen University Schinkelstr. 2 52062 Aachen Germany

7. Institut Pprime CNRS UPR 3346 Université de Poitiers SP2MI Boulevard Marie et Pierre Curie, TSA 41123, Poitiers Cedex 9 Poitiers 86073 France

Abstract

AbstractBrittle topologically close‐packed precipitates form in many advanced alloys. Due to their complex structures, little is known about their plasticity. Here, a strategy is presented to understand and tailor the deformability of these complex phases by considering the Nb–Co µ‐phase as an archetypal material. The plasticity of the Nb–Co µ‐phase is controlled by the Laves phase building block that forms parts of its unit cell. It is found that between the bulk C15–NbCo2 Laves and Nb–Co µ‐phases, the interplanar spacing and local stiffness of the Laves phase building block change, leading to a strong reduction in hardness and stiffness, as well as a transition from synchroshear to crystallographic slip. Furthermore, as the composition changes from Nb6Co7 to Nb7Co6, the Co atoms in the triple layer are substituted such that the triple layer of the Laves phase building block becomes a slab of pure Nb, resulting in inhomogeneous changes in elasticity and a transition from crystallographic slip to a glide‐and‐shuffle mechanism. These findings open opportunities to purposefully tailor the plasticity of these topologically close‐packed phases in the bulk by manipulating the interplanar spacing and local shear modulus of the fundamental crystal building blocks at the atomic scale.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3