Bioinspired Artificial Visual‐Respiratory Synapse as Multimodal Scene Recognition System with Oxidized‐Vacancies MXene

Author:

Tan Dongchen1,Zhang Zhaorui1,Shi Haohao1,Sun Nan1,Li Qikun2,Bi Sheng1,Huang Jijie3,Liu Yiheng1,Guo Qinglei4,Jiang Chengming1ORCID

Affiliation:

1. State Key Laboratory of High‐Performance Precision Manufacturing Dalian University of Technology Dalian 116024 China

2. School of Advanced Materials and Nanotechnology Xidian University Xi'an 710126 China

3. School of Materials Engineering Purdue University West Lafayette IN 47907 USA

4. Department of Material Science and Engineering Frederick Seitz Material Research Laboratory University of Illinois at Urbana‐Champaign Urbana IL 61801 USA

Abstract

AbstractIn the pursuit of artificial neural systems, the integration of multimodal plasticity, memory retention, and perceptual functions stands as a paramount objective in achieving neuromorphic perceptual components inspired by the human brain, to emulating the neurological excitability tuning observed in human visual and respiratory collaborations. Here, an artificial visual‐respiratory synapse is presented with monolayer oxidized MXene (VRSOM) exhibiting synergistic light and atmospheric plasticity. The VRSOM enables to realize facile modulation of synaptic behaviors, encompassing postsynaptic current, sustained photoconductivity, stable facilitation/depression properties, and “learning‐experience” behavior. These performances rely on the privileged photocarrier trapping characteristics and the hydroxyl‐preferential selectivity inherent of oxidized vacancies. Moreover, environment recognitions and multimodal neural network image identifications are achieved through multisensory integration, underscoring the potential of the VRSOM in reproducing human‐like perceptual attributes. The VRSOM platform holds significant promise for hardware output of human‐like mixed‐modal interactions and paves the way for perceiving multisensory neural behaviors in artificial interactive devices.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3