AI‐Driven Discovery of Amorphous Fluorinated Polymer Electret with Improved Charge Stability for Energy Harvesting

Author:

Mao Zetian1ORCID,Chen Chi2ORCID,Zhang Yucheng1,Suzuki Kuniko1,Suzuki Yuji1ORCID

Affiliation:

1. Department of Mechanical Engineering The University of Tokyo Hongo 7‐3‐1, Bunkyo‐ku Tokyo 113‐8656 Japan

2. Department of NanoEngineering University of California San Diego 9500 Gilman Drive #0448 La Jolla California CA 92093 USA

Abstract

AbstractElectret materials are promising dielectric materials with trapped charges for various applications such as vibration energy harvesters and acoustic transducers. In the present work, ionization potential is discovered as the descriptor to quantify the charging performance for amorphous fluorinated polymer electrets. Using this descriptor, high‐throughput computations, and graph neural network models, 1 176 591 functional groups are screened on the cyclic transparent optical polymers (CYTOP), and 3 promising electrets are identified. The electrets are synthesized experimentally as 15 µm‐thick films. The films are able to keep their both bipolar surface potentials above ±3.1 kV for over 1500 h and are estimated to have longevity of 146 years under 80 °C, achieving significant improvements on charging stability among CYTOP‐based polymer electrets. The excellent bipolar charging performance can greatly enhance power generation capacity of electret‐based vibration energy harvesters. This work also demonstrates the use of deep learning as a new paradigm for accelerating practical materials discovery.

Funder

Japan Science and Technology Corporation

Core Research for Evolutional Science and Technology

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3