Triplet Fusion Upconversion for Photocuring 3D‐Printed Particle‐Reinforced Composite Networks

Author:

Wong Jitkanya1ORCID,Wei Shixuan2ORCID,Meir Rinat2ORCID,Sadaba Naroa13,Ballinger Nathan A.1ORCID,Harmon Elizabeth K.4ORCID,Gao Xin2ORCID,Altin‐Yavuzarslan Gokce1ORCID,Pozzo Lilo D.4ORCID,Campos Luis M.2ORCID,Nelson Alshakim1ORCID

Affiliation:

1. Department of Chemistry University of Washington Seattle WA 98195 USA

2. Department of Chemistry Columbia University New York NY 10027 USA

3. POLYMAT and Department of Polymers and Advanced Materials: Physics Chemistry and Technology Faculty of Chemistry University of the Basque Country UPV/EHU Donostia‐San Sebastián 20018 Spain

4. Department of Chemical Engineering University of Washington Seattle WA 98195 USA

Abstract

AbstractHigh energy photons (λ < 400 nm) are frequently used to initiate free radical polymerizations to form polymer networks, but are only effective for transparent objects. This phenomenon poses a major challenge to additive manufacturing of particle‐reinforced composite networks since deep light penetration of short‐wavelength photons limits the homogeneous modification of physicochemical and mechanical properties. Herein, the unconventional, yet versatile, multiexciton process of triplet–triplet annihilation upconversion (TTA‐UC) is employed for curing opaque hydrogel composites created by direct‐ink‐write (DIW) 3D printing. TTA‐UC converts low energy red light (λmax = 660 nm) for deep penetration into higher‐energy blue light to initiate free radical polymerizations within opaque objects. As proof‐of‐principle, hydrogels containing up to 15 wt.% TiO2 filler particles and doped with TTA‐UC chromophores are readily cured with red light, while composites without the chromophores and TiO2 loadings as little as 1–2 wt.% remain uncured. Importantly, this method has wide potential to modify the chemical and mechanical properties of complex DIW 3D‐printed composite polymer networks.

Funder

National Science Foundation

U.S. Department of Energy

Argonne National Laboratory

Division of Emerging Frontiers in Research and Innovation

Euskal Herriko Unibertsitatea

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3