Mechanically Gated Transistor

Author:

Huang Boyuan12ORCID,Yu Ye123,Zhang Fengyuan12,Liang Yuhang3,Su Shengyao12,Zhang Mei12,Zhang Yuan12,Li Changjian12,Xie Shuhong3,Li Jiangyu12

Affiliation:

1. Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China

2. Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices Southern University of Science and Technology Shenzhen Guangdong 518055 China

3. Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education School of Materials Science and Engineering Xiangtan University Xiangtan Hunan 411105 China

Abstract

AbstractSilicon‐based field effect transistors have underpinned the information revolution in the last 60 years, and there is a strong desire for new materials, devices, and architectures that can help sustain the computing power in the age of big data and artificial intelligence. Inspired by the Piezo channels, a mechanically gated transistor abandoning electric gating altogether, achieving an ON/OFF ratio over three orders of magnitude under a mechanical force of hundreds of nN is developed. The two‐terminal device utilizes flexoelectric polarization induced by strain gradient, which modulates the carrier concentration in a Van der Waals structure significantly, and it mimics Piezo channels for artificial tactile perception. This simple device concept can be easily adapted to a wide range of semiconducting materials, helping promote the fusion between mechanics and electronics in a similar way as mechanobiology.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3