Sulfur‐Assisted Surface Modification of Lithium‐Rich Manganese‐Based Oxide toward High Anionic Redox Reversibility

Author:

Xu Zhou1,Guo Xingzhong12,Song Wenjun3,Wang Junzhang1,Qin Tengteng1,Yuan Yifei3ORCID,Lu Jun45ORCID

Affiliation:

1. State Key Laboratory of Silicon and Advanced Semiconductor Materials School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310058 China

2. Hangzhou Global Scientific and Technological Innovation Center Zhejiang University Hangzhou Zhejiang 311200 China

3. College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China

4. College of Chemical and Biological Engineering Zhejiang University Hangzhou Zhejiang 310058 China

5. Quzhou Institute of Power Battery and Grid Energy Storage Quzhou Zhejiang 324000 China

Abstract

AbstractEnergy storage via anionic redox provides extra capacity for lithium‐rich manganese‐based oxide cathodes at high voltage but causes gradual structural collapse and irreversible capacity loss with generation of On (0 ≤ n < 2) species upon deep oxidation. Herein, the stability and reversibility of anionic redox reactions are enhanced by a simple sulfur‐assisted surface modification method, which not only modulates the material's energy band allowing feasible electron release from both bonding and antibonding bands, but also traps the escaping On via an as‐constructed SnS2−xσOy coating layer and return them to the host lattice upon discharge. The regulation of anionic redox inhibits the irreversible structural transformation and parasitic reactions, maintaining the specific capacity retention of as‐modified cathode up to 94% after 200 cycles at 100 mA g−1, along with outstanding voltage stability. The reported strategy incorporating energy band modulation and oxygen trapping is promising for the design and advancement of other cathodes storing energy through anion redox.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3