On‐Surface Synthesis of Edge‐Extended Zigzag Graphene Nanoribbons

Author:

Kinikar Amogh1ORCID,Xu Xiushang23ORCID,Giovannantonio Marco Di1ORCID,Gröning Oliver1ORCID,Eimre Kristjan1ORCID,Pignedoli Carlo A.1ORCID,Müllen Klaus34ORCID,Narita Akimitsu23ORCID,Ruffieux Pascal1ORCID,Fasel Roman15ORCID

Affiliation:

1. Empa Swiss Federal Laboratories for Materials Science and Technology nanotech@surfaces Laboratory Dübendorf 8600 Switzerland

2. Okinawa Institute of Science and Technology Graduate University Organic and Carbon Nanomaterials Unit 1919‐1 Tancha, Onnason Kunigamigun Okinawa 904‐0495 Japan

3. Max Planck Institute for Polymer Research 55128 Mainz Germany

4. Johannes Gutenberg University Mainz Institute of Physical Chemistry Duesbergweg 10‐14 55128 Mainz Germany

5. Department of Chemistry, Biochemistry and Pharmaceutical Sciences University of Bern Freiestrasse 3 Bern 3012 Switzerland

Abstract

AbstractGraphene nanoribbons (GNRs) have gained significant attention in nanoelectronics due to their potential for precise tuning of electronic properties through variations in edge structure and ribbon width. However, the synthesis of GNRs with highly sought‐after zigzag edges (ZGNRs), critical for spintronics and quantum information technologies, remains challenging. In this study, a design motif for synthesizing a novel class of GNRs termed edge‐extended ZGNRs is presented. This motif enables the controlled incorporation of edge extensions along the zigzag edges at regular intervals. The synthesis of a specific GNR instance—a 3‐zigzag‐rows‐wide ZGNR—with bisanthene units fused to the zigzag edges on alternating sides of the ribbon axis is successfully demonstrated. The resulting edge‐extended 3‐ZGNR is comprehensively characterized for its chemical structure and electronic properties using scanning probe techniques, complemented by density functional theory calculations. The design motif showcased here opens up new possibilities for synthesizing a diverse range of edge‐extended ZGNRs, expanding the structural landscape of GNRs and facilitating the exploration of their structure‐dependent electronic properties.

Funder

Okinawa Institute of Science and Technology Graduate University

Max-Planck-Gesellschaft

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Horizon 2020

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3