Unifying and Suppressing Conduction Losses of Polymer Dielectrics for Superior High‐Temperature Capacitive Energy Storage

Author:

Yang Minhao123,Wang Zepeng12,Zhao Yanlong1,Liu Zeren12,Pang Hui24,Dang Zhi‐Min3ORCID

Affiliation:

1. Institute of Energy Power Innovation North China Electric Power University Beijing 102206 China

2. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China

3. State Key Laboratory of Power System Operation and Control Tsinghua University Beijing 100084 China

4. Huairou Laboratory Beijing 101499 China

Abstract

AbstractSuperior high‐temperature capacitive performance of polymer dielectrics is critical for the modern film capacitor demanded in the harsh‐environment electronic and electrical systems. Unfortunately, the capacitive performance degrades rapidly at elevated temperatures owing to the exponential growth of conduction loss. The conduction loss is mainly composed of electrode and bulk‐limited conduction. Herein, the contribution of surface and bulk factors is unified to conduction loss, and the loss is thoroughly suppressed. The experimental results demonstrate that the polar oxygen‐containing groups on the surface of polymer dielectrics can act as the charge trap sites to immobilize the injected charges from electrode, which can in turn establish a built‐in field to weaken the external electric field and augment the injection barrier height. Wide bandgap aluminum oxide (Al2O3) nanoparticle fillers can serve as deep traps to constrain the transport of injected or thermally activated charges in the bulk phase. From this, at 200 °C, the discharged energy density with a discharge–charge efficiency of 90% increases by 1058.06% from 0.31 J cm−3 for pristine polyetherimide to 3.59 J cm−3 for irradiated composite film. The principle of simultaneously inhibiting the electrode and bulk‐limited conduction losses could be easily extended to other polymer dielectrics for high‐temperature capacitive performance.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3