Multistable Metafluid based Energy Harvesting and Storage

Author:

Peretz Ofek1ORCID,Ben Abu Ezra1ORCID,Zigelman Anna1ORCID,Givli Sefi1ORCID,Gat Amir D.1ORCID

Affiliation:

1. Faculty of Mechanical Engineering Technion ‐ Israel Institute of Technology Haifa 3200003 Israel

Abstract

AbstractThe thermodynamic properties of fluids play a crucial role in many engineering applications, particularly in the context of energy. Fluids with multistable thermodynamic properties may offer new paths for harvesting and storing energy via transitions between equilibria states. Such artificial multistable fluids can be created using the approach employed in metamaterials, which controls macro‐properties through micro‐structure composition. In this work, the dynamics of such “metafluids” is examined for a configuration of calorically‐perfect compressible gas contained within multistable elastic capsules flowing in a fluid‐filled tube. The velocity‐, pressure‐, and temperature‐fields of multistable compressible metafluids is studied by both analytically and experimentally, focusing on transitions between different equilibria. The dynamics of a single capsule is first examine, which may move or change equilibrium state, due to fluidic forces. The interaction and motion of multiple capsules within a fluid‐filled tube is then studied. It shows that such a system can be used to harvest energy from external temperature variations in either time or space. Thus, fluidic multistability allows specific quanta of energy to be captured and stored indefinitely as well as transported as a fluid, via tubes, at standard atmospheric conditions without the need for thermal isolation.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3