Ultrafast Electrical Pulse Synthesis of Highly Active Electrocatalysts for Beyond‐Industrial‐Level Hydrogen Gas Batteries

Author:

Jiang Taoli1,Liu Zaichun1,Yuan Yuan1,Zheng Xinhua1,Park Sunhyeong1,Wei Shuyang1,Li Linxiang1,Ma Yirui1,Liu Shuang1,Chen Jinghao1,Zhu Zhengxin1,Meng Yahan1,Li Ke1,Sun Jifei1,Peng Qia1,Chen Wei1ORCID

Affiliation:

1. Department of Applied Chemistry School of Chemistry and Materials Science Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China

Abstract

AbstractThe high reliability and proven ultra‐longevity make aqueous hydrogen gas (H2) batteries ideal for large‐scale energy storage. However, the low alkaline hydrogen evolution and oxidation reaction (HER/HOR) activities of expensive platinum catalysts severely hamper their widespread applications in H2 batteries. Here, cost‐effective, highly active electrocatalysts, with a model of ruthenium‐nickel alloy nanoparticles in ≈3 nm anchored on carbon black (RuNi/C) as an example, are developed by an ultrafast electrical pulse approach for nickel‐hydrogen gas (NiH2) batteries. Having a competitive low cost of about one fifth of Pt/C benckmark, this ultrafine RuNi/C catalyst displays an ultrahigh HOR mass activity of 2.34 A mg−1 at 50 mV (vs RHE) and an ultralow HER overpotential of 19.5 mV at a current density of 10 mA cm−2. As a result, the advanced NiH2 battery can efficiently operate under all‐climate conditions (from −25 to +50 °C) with excellent durability. Notably, the NiH2 cell stack achieves an energy density up to 183 Wh kg−1 and an estimated cost of ≈49 $ kWh−1 under an ultrahigh cathode Ni(OH)2 loading of 280 mg cm−2 and a low anode Ru loading of ≈62.5 µg cm−2. The advanced beyond‐industrial‐level hydrogen gas batteries provide great opportunities for practical grid‐scale energy storage applications.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3