Affiliation:
1. College of Chemistry and Molecular Sciences Key Laboratory of Biomedical Polymers of Ministry of Education Institute of Molecular Medicine Renmin Hospital of Wuhan University School of Microelectronics Wuhan University Wuhan 430072 P. R. China
Abstract
AbstractPromising advances in molecular medicine have promoted the urgent requirement for reliable and sensitive diagnostic tools. Electronic biosensing devices based on field‐effect transistors (FETs) exhibit a wide range of benefits, including rapid and label‐free detection, high sensitivity, easy operation, and capability of integration, possessing significant potential for application in disease screening and health monitoring. In this perspective, the tremendous efforts and achievements in the development of high‐performance FET biosensors in the past decade are summarized, with emphasis on the interface engineering of FET‐based electrical platforms for biomolecule identification. First, an overview of engineering strategies for interface modulation and recognition element design is discussed in detail. For a further step, the applications of FET‐based electrical devices for in vitro detection and real‐time monitoring in biological systems are comprehensively reviewed. Finally, the key opportunities and challenges of FET‐based electronic devices in biosensing are discussed. It is anticipated that a comprehensive understanding of interface engineering strategies in FET biosensors will inspire additional techniques for developing highly sensitive, specific, and stable FET biosensors as well as emerging designs for next‐generation biosensing electronics.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities
State Key Laboratory of Chemo/Biosensing and Chemometrics
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献