Perforin‐Mimicking Molecular Drillings Enable Macroporous Hollow Lignin Spheres for Performance‐Configurable Materials

Author:

Wang Hairong1ORCID,Tan Shujun1ORCID,Su Zhenhua2,Li Mingfei1,Hao Xiang1ORCID,Peng Feng13ORCID

Affiliation:

1. Beijing Key Laboratory of Lignocellulosic Chemistry MOE Engineering Research Center of Forestry Biomass Materials and Energy Beijing Forestry University Beijing 100083 China

2. China National Pulp and Paper Research Institute Beijing 100102 China

3. State Key Laboratory of Efficient Production of Forest Resources Beijing 100083 China

Abstract

AbstractDespite the first observations that the perforin can punch holes in target cells for live/dead cycles in the human immune system over 110 years ago, emulating this behavior in materials science remains challenging. Here, a perforin‐mimicking molecular drilling strategy is employed to engineer macroporous hollow lignin spheres as performance‐configurable catalysts, adhesives, and gels. Using a toolbox of over 20 molecular compounds, the local curvature of amphiphilic lignin is modulated to generate macroporous spheres with hole sizes ranging from 0 to 100 nm. Multiscale control is precisely achieved through noncovalent assembly directing catalysis, synthesis, and polymerization. Exceptional performance mutations correlate with the changes in hole size, including an increase in catalytic efficiency from 50% to 100%, transition from nonstick synthetics to ultrastrong adhesives (adhesion ≈18.3 MPa, exceeding that of classic epoxies), and transformation of viscous sols to tough nanogels. Thus, this study provides a robust and versatile noncovalent route for mimicking perforin‐induced structural variations in cells, representing a significant stride toward the exquisite orchestration of assemblies over multiple length scales.

Funder

Fundamental Research Funds for the Central Universities

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3