Thermal Shock Synthesis for Loading Sub‐2 nm Ru Nanoclusters on Titanium Nitride as a Remarkable Electrocatalyst toward Hydrogen Evolution Reaction

Author:

Zong Lingbo1ORCID,Lu Fenghong1,Li Ping1,Fan Kaicai1,Zhan Tianrong1,Liu Porun2,Jiang Lixue3,Chen Dehong4ORCID,Zhang Ruiyong5,Wang Lei1ORCID

Affiliation:

1. International Cooperation United Laboratory of Eco‐chemical Engineering and Green Manufacturing Technology Innovation Center of Battery Safety and Energy Storage Technology College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 China

2. Centre for Catalysis and Clean Energy Gold Coast Campus Griffith University Gold Coast QLD 4222 Australia

3. School of Chemical Engineering University of New South Wales Kensington New South Wales 2052 Australia

4. College of Materials Science and Engineering Qingdao University of Science & Technology Qingdao 266042 China

5. Key Laboratory of Marine Environmental Corrosion and Bio‐fouling Institute of Oceanology Chinese Academy of Sciences 7 Nanhai Road Qingdao 266071 China

Abstract

AbstractHeterogeneous catalysts embracing metal entities on suitable supports are profound in catalyzing various chemical reactions, and substantial synthetic endeavors in metal–support interaction modulation are made to enhance catalytic performance. Here, it is reported the loading of sub‐2 nm Ru nanocrystals (NCs) on titanium nitride support (HTS‐Ru‐NCs/TiN) via a special Ru–Ti interaction using the high‐temperature shock (HTS) method. Direct dechlorination of the adsorbed RuCl3, ultrafast nucleation process, and short coalescence duration at ultrahigh temperatures contribute to the immobilization of Ru NCs on TiN support via producing the Ru–Ti interfacial perimeter. HTS‐Ru‐NCs/TiN shows remarkable activity toward hydrogen evolution reaction (HER) in alkaline solution, yielding ultralow overpotentials of 16.3 and 86.6 mV to achieve 10 and 100 mA cm−2, respectively. The alkaline and anion exchange membrane water electrolyzers assembled using HTS‐Ru‐NCs/TiN yield 1.0 A cm−2 at 1.65 and 1.67 V, respectively, which validate its applicability in the hydrogen production industry. Theoretical simulations reveal the favorable formation of Ru─O and Ti─H bonds at the interfacial perimeters between Ru NCs and TiN, which accelerates the prerequisite water dissociation kinetics for enhanced HER activity. This exemplified work motivates the design of specific interfacial perimeters via the HTS strategy to improve the performance of diverse catalysis.

Funder

National Natural Science Foundation of China

Major Scientific and Technological Innovation Project of Shandong Province

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3