Single‐Atom and Hierarchical‐Pore Aerogel Confinement Strategy for Low‐Platinum Fuel Cells

Author:

Luo Yi1,Li Ke2,Chen Yongting3,Feng Junzong1ORCID,Wang Lukai1,Jiang Yonggang1,Li Liangjun1,Yu Gang4,Feng Jian1

Affiliation:

1. Science and Technology on Advanced Ceramic Fibers and Composites Laboratory College of Aerospace Science and Engineering National University of Defense Technology Changsha Hunan 410073 China

2. College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 China

3. College of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan Hubei 430081 China

4. Luoqing New Materials Company Foshan Guangdong 526040 China

Abstract

AbstractAchieving high catalytic performance through the lowest possible content of platinum (Pt) is the key to cost reduction of proton‐exchange‐membrane fuel cells (PEMFCs). However, lowering the Pt loading in PEMFCs leads to the high mass‐transport resistance of oxygen originating from the limited active sites, and causes less stability of the catalysts due to Pt size growth after long‐time operation. Herein, Pt–metal/metal–N–C aerogel catalysts are designed that substantially reduce oxygen‐related mass transport resistance and have long‐term durability. The tailoring of the Fe–N–C aerogel support with hierarchical and interconnecting pores enable a low local oxygen transport resistance (0.18 s cm−1) for PEMFCs with ultralow Pt loading (50 ± 5 µgPt cm2). Chemical confinement of Fe─N sites ensures high stability of the loaded‐Pt both in the processes of synthesis up to 1000 °C and practical application in PEMFCs. The ultralow Pt PEMFC displays a low voltage loss of 8 mV at 0.80 A cm2 and unchanged electrochemical surface area after 60 000 cycles of accelerated durability testing. The allying of the hierarchical pores, the aerogel, and the single atoms can fully reflect their structural advantages and expand the understanding for the synthesis of advanced fuel cell PEMFCs catalysts.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3