Affiliation:
1. Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
2. College of Sciences Institute for Sustainable Energy Shanghai University Shanghai 200444 China
Abstract
AbstractSolid‐state electrolytes (SSEs) have attracted extensive interests due to the advantages in developing secondary batteries with high energy density and outstanding safety. Possessing high ionic conductivity and the lowest reduction potential among the state‐of‐the‐art SSEs, the garnet type SSE is one of the most promising candidates to achieve high performance solid‐state lithium batteries (SSLBs). However, the elastic modulus of the garnet electrolyte leads to deteriorated interfacial contacts, and the increasing in electronic conduction at either anode/garnet interface or grain boundary results in Li dendrite growth. Here, recent developments of the solid interfaces for the garnet electrolytes, including the strategies of Li dendrite suppression and interfacial chemical/electrochemical/mechanical stabilizations are presented. A new viewpoint of the double edges of interfacial lithiophobicity is proposed, and the rational design of the interphases, as well as effective stacking methods of the garnet‐based SSLBs are summarized. Moreover, practical roles of the garnet electrolyte in SSLB industry are also discussed. This work delivers insights into the solid interfaces for the garnet electrolytes, which provides not only the promotion of the garnet‐based SSLBs, but also a comprehensive understanding of the interfacial stabilization for the whole SSE family.
Funder
National Natural Science Foundation of China
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献