Affiliation:
1. School of Pharmacy University College Cork Cork T12 K8AF Ireland
2. Faculty of Pharmacy Minia University Minia 61519 Egypt
3. Institute for Hygiene and Microbiology University of Wuerzburg 97080 Wuerzburg Germany
4. National Reference Center for Invasive Fungal Infections Leibniz Institute for Natural Product Research and Infection Biology Hans Knoell Institute 07745 Jena Germany
Abstract
AbstractIn this paper, a roadmap is provided for the regulatory approval of one of the exciting and dynamic drug delivery fields, microneedles, by using a Quality by Design approach to pharmaceutical product development. In this regard, a quality target product profile (QTPP) and the critical quality attributes (CQA) of microneedles are identified. A case study of the recently patented method of fabricating glass microneedles entirely from a therapeutic agent, thus eliminating the requirement for additional excipients is discussed. The glass microneedle, ArrayPatch, is a propriety wearable device with platform potential consisting of an array of sharp, but painless, dissolvable microneedles manufactured with 100% drug. The microneedles penetrate the skin on application and dissolve to deliver a locally effective dose. The in vitro characterization of the microneedle CQAs under WHO‐guided stability conditions will be described to assess the manufacturing readiness of ArrayPatch. A live technical video is also provided, presenting a unique procedure of jugular vein cannulation through the ear vein of a pig animal model to study the in vivo pharmacokinetics of ArrayPatch compared to standard‐of‐care marketed products.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献