Seeding Atomic Silver into Internal Lattice Sites of Transition Metal Oxide for Advanced Electrocatalysis

Author:

Song Wenjun1,He Kun1,Li Chenghang1,Yin Ruonan1,Guo Yaqing1,Nie Anmin2,Li Yanshuai1,Yang Keqin1,Zhou Mengting1,Lin Xiaoruizhuo1,Wang Zheng‐Jun1,Ren Qingqing1,Zhu Shaojun1,Xu Ting1,Liu Suya3,Jin Huile1,Lv Jing‐Jing1,Wang Shun1ORCID,Yuan Yifei1ORCID

Affiliation:

1. College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 China

2. Center for High Pressure Science State Key Laboratory of Metastable Materials Science and Technology Yanshan University Qinhuangdao 066004 China

3. Thermo Fisher Scientific Jinke Road No. 2517, Shanghai Nanoport 200120 China

Abstract

AbstractTransition metal oxides (TMOs) are widely studied for loading of various catalysts due to their low cost and high structure flexibility. However, the prevailing close‐packed nature of most TMOs crystals has restricted the available loading sites to surface only, while their internal bulk lattice remains unactuated due to the inaccessible narrow space that blocks out most key reactants and/or particulate catalysts. Herein, using tunnel‐structured MnO2, this study demonstrates how TMO's internal lattice space can be activated as extra loading sites for atomic Ag in addition to the conventional surface‐only loading, via which a dual‐form Ag catalyst within MnO2 skeleton is established. In this design, not only faceted Ag nanoparticles are confined onto MnO2 surface by coherent lattice‐sharing, Ag atomic strings are also seeded deep into the sub‐nanoscale MnO2 tunnel lattice, enriching the catalytically active sites. Tested for electrochemical CO2 reduction reaction (eCO2RR), such dual‐form catalyst exhibits a high Faradaic efficiency (94%), yield (67.3 mol g−1 h−1) and durability (≈48 h) for CO production, exceeding commercial Ag nanoparticles and most Ag‐based electrocatalysts. Theoretical calculations further reveal the concurrent effect of such dual‐form catalyst featuring facet‐dependent eCO2RR for Ag nanoparticles and lattice‐confined eCO2RR for Ag atomic strings, inspiring the future design of catalyst–substrate configuration.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3