Boosting Solid‐State Reconversion Reactivity to Mitigate Lithium Trapping for High Initial Coulombic Efficiency

Author:

Cao Shengkai1,Zhu Zhiqiang2,Zhang Wei2,Xia Huarong2,Zeng Yi2,Yuan Song2,Ge Xiang2,Lv Zhisheng1,Wei Jiaqi2,Liu Lin2,Du Yonghua3,Xi Shibo4,Loh Xian Jun14,Chen Xiaodong2ORCID

Affiliation:

1. Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634 Singapore

2. Innovative Centre for Flexible Devices (iFLEX) Max Planck–NTU Joint Lab for Artificial Senses School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore

3. National Synchrotron Light Source II Brookhaven National Laboratory Upton NY Upton 11973 USA

4. Institute of Sustainability for Chemicals Energy and Environment (ISCE2) Agency for Science, Technology and Research (A*STAR) 1 Pesek Road Jurong Island Singapore 627833 Singapore

Abstract

AbstractAn initial Coulombic efficiency (ICE) higher than 90% is crucial for industrial lithium‐ion batteries, but numerous electrode materials are not standards compliant. Lithium trapping, due to i) incomplete solid‐state reaction of Li+ generation and ii) sluggish Li+ diffusion, undermines ICE in high‐capacity electrodes (e.g., conversion‐type electrodes). Current approaches mitigating lithium trapping emphasize ii) nanoscaling (<50 nm) to minimize Li+ diffusion distance, followed by severe solid electrolyte interphase formation and inferior volumetric energy density. Herein, this work accentuates i) instead, to demonstrate that the lithium trapping can be mitigated by boosting the solid‐state reaction reactivity. As a proof‐of‐concept, ternary LiFeO2 anodes, whose discharged products contain highly reactive vacancy‐rich Fe nanoparticles, can alleviate lithium trapping and enable a remarkable average ICE of ≈92.77%, much higher than binary Fe2O3 anodes (≈75.19%). Synchrotron‐based techniques and theoretical simulations reveal that the solid‐state reconversion reaction for Li+ generation between Fe and Li2O can be effectively promoted by the Fe‐vacancy‐rich local chemical environment. The superior ICE is further demonstrated by assembled pouch cells. This work proposes a novel paradigm of regulating intrinsic solid‐state chemistry to ameliorate electrochemical performance and facilitate industrial applications of various advanced electrode materials.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3