Spin‐State Modulation on Metal–Organic Frameworks for Electrocatalytic Oxygen Evolution

Author:

He Fan1,Zheng Qiang2,Yang Xiaoxuan1,Wang Liguang3,Zhao Zilin1,Xu Yunkai1,Hu Lingzi4,Kuang Yongbo5,Yang Bin16,Li Zhongjian16,Lei Lecheng16,Qiu Ming4,Lu Jun3,Hou Yang167ORCID

Affiliation:

1. Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China

2. CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Centre for Nanoscience and Technology Beijing 100190 China

3. College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China

4. Institute of Nanoscience and Nanotechnology College of Physical Science and Technology Central China Normal University Wuhan 430079 China

5. Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China

6. Institute of Zhejiang University – Quzhou Quzhou 324000 China

7. School of Biological and Chemical Engineering Ningbotech University Ningbo 315100 China

Abstract

AbstractElectrochemical oxygen evolution reaction (OER) kinetics are heavily correlated with hybridization of the transition metal d‐orbital and oxygen intermediate p‐orbital, which dictates the barriers of intermediate adsorption/desorption on the active sites of catalysts. Herein, a strategy is developed involving strain engineering and coordination regulation to enhance the hybridization of Ni 3d and O 2p orbitals, and the as‐synthesized Ni‐2,6‐naphthalenedicarboxylic acid metal–organic framework (DD‐Ni‐NDA) nanosheets deliver a low OER overpotential of 260 mV to reach 10 mA cm−2. By integrating an alkaline anion exchange membrane electrolyzer and Pt/C electrode, 200 and 500 mA cm−2 current densities are reached with cell voltages of 1.6 and 2.1 V, respectively. When loaded on a BiVO4 photoanode, the nanosheet enables highly active solar‐driven water oxygen. Structural characterizations together with theoretical calculations reveal that the spin state of the centre Ni atoms is regulated by the tensile strain and unsaturated coordination defects in DD‐Ni‐NDA, and such spin regulation facilitates spin‐dependent charge transfer of the OER. Molecular orbital hybridization analysis reveals the mechanism of OH* and OOH* adsorption energy regulation by changes in the DD‐Ni‐NDA spin state, which provides a deeper understanding of the electronic structure design of catalysts for the OER.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Beijing Synchrotron Radiation Facility

Startup Foundation for Hundred-Talent Program of Zhejiang University

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3