MoS2@Polyaniline for Aqueous Ammonium‐Ion Supercapacitors

Author:

Dai Juguo12,Yang Chunying1,Xu Yiting1,Wang Xiaohong1,Yang Siyu1,Li Dongxu1,Luo Lili1,Xia Long1,Li Junshan23,Qi Xueqiang4,Cabot Andreu25ORCID,Dai Lizong1

Affiliation:

1. Fujian Provincial Key Laboratory of Fire Retardant Materials College of Materials Xiamen University Xiamen 361005 China

2. Catalonia Institute for Energy Research (IREC) Sant Adrià de Besòs Barcelona Catalonia 08930 Spain

3. Institute for Advanced Study Chengdu University Chengdu 610106 China

4. College of Chemistry and Chemical Engineering Chongqing University of Technology Chongqing 400054 China

5. ICREA Pg. Lluis Companys 23 Barcelona Catalonia 08010 Spain

Abstract

AbstractAmmonium‐ion aqueous supercapacitors are raising notable attention owing to their cost, safety, and environmental advantages, but the development of optimized electrode materials for ammonium‐ion storage still lacks behind expectations. To overcome current challenges, here, a sulfide‐based composite electrode based on MoS2 and polyaniline (MoS2@PANI) is proposed as an ammonium‐ion host. The optimized composite possesses specific capacitances above 450 F g−1 at 1 A g−1, and 86.3% capacitance retention after 5000 cycles in a three‐electrode configuration. PANI not only contributes to the electrochemical performance but also plays a key role in defining the final MoS2 architecture. Symmetric supercapacitors assembled with such electrodes display energy densities above 60 Wh kg−1 at a power density of 725 W kg−1. Compared with Li+ and K+ ions, the surface capacitive contribution in NH4+‐based devices is lower at every scan rate, which points to an effective generation/breaking of H‐bonds as the mechanism controlling the rate of NH4+ insertion/de‐insertion. This result is supported by density functional theory calculations, which also show that sulfur vacancies effectively enhance the NH4+ adsorption energy and improve the electrical conductivity of the whole composite. Overall, this work demonstrates the great potential of composite engineering in optimizing the performance of ammonium‐ion insertion electrodes.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3