Skyrmion‐Excited Spin‐Wave Fractal Networks

Author:

Tang Nan1,Liyanage W. L. N. C.2,Montoya Sergio A.34ORCID,Patel Sheena35,Quigley Lizabeth J.1,Grutter Alexander J.6ORCID,Fitzsimmons Michael R.27ORCID,Sinha Sunil5,Borchers Julie A.6ORCID,Fullerton Eric E.38ORCID,DeBeer‐Schmitt Lisa7ORCID,Gilbert Dustin A.12ORCID

Affiliation:

1. Materials Science and Engineering Department University of Tennessee Knoxville TN 37996 USA

2. Department of Physics and Astronomy University of Tennessee Knoxville TN 37996 USA

3. Center for Memory and Recording Research University of California, San Diego La Jolla CA 92093 USA

4. Naval Information Warfare Center Pacific San Diego CA 92152 USA

5. Physics Department University of California, San Diego San Diego CA 92093 USA

6. NIST Center for Neutron Research National Institute of Standards and Technology Gaithersburg MD 20899 USA

7. Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA

8. Department of Electrical and Computer Engineering University of California, San Diego La Jolla CA 92093 USA

Abstract

AbstractMagnetic skyrmions exhibit unique, technologically relevant pseudo‐particle behaviors which arise from their topological protection, including well‐defined, 3D dynamic modes that occur at microwave frequencies. During dynamic excitation, spin waves are ejected into the interstitial regions between skyrmions, creating the magnetic equivalent of a turbulent sea. However, since the spin waves in these systems have a well‐defined length scale, and the skyrmions are on an ordered lattice, ordered structures from spin‐wave interference can precipitate from the chaos. This work uses small‐angle neutron scattering (SANS) to capture the dynamics in hybrid skyrmions and investigate the spin‐wave structure. Performing simultaneous ferromagnetic resonance and SANS, the diffraction pattern shows a large increase in low‐angle scattering intensity, which is present only in the resonance condition. This scattering pattern is best fit using a mass fractal model, which suggests the spin waves form a long‐range fractal network. The fractal structure is constructed of fundamental units with a size that encodes the spin‐wave emissions and are constrained by the skyrmion lattice. These results offer critical insights into the nanoscale dynamics of skyrmions, identify a new dynamic spin‐wave fractal structure, and demonstrate SANS as a unique tool to probe high‐speed dynamics.

Funder

National Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3