Soft–Rigid Heterostructures with Functional Cation Vacancies for Fast‐Charging and High‐Capacity Sodium Storage

Author:

Su Yu123ORCID,Johannessen Bernt4,Zhang Shilin5ORCID,Chen Ziru1,Gu Qinfen4,Li Guanjie5,Yan Hong1,Li Jia‐Yang23,Hu Hai‐Yan23,Zhu Yan‐Fang23,Xu Sailong16ORCID,Liu Huakun7,Dou Shixue7,Xiao Yao23ORCID

Affiliation:

1. State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China

2. Institute for Carbon Neutralization College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 China

3. Wenzhou Key Laboratory of Sodium‐Ion Batteries Wenzhou University Technology Innovation Institute for Carbon Neutralization Wenzhou 325035 China

4. Australian Synchrotron Clayton VIC 3168 Australia

5. School of Chemical Engineering & Advanced Materials The University of Adelaide Adelaide SA 5005 Australia

6. Quzhou Institute for Innovation in Resource Chemical Engineering Quzhou 324000 China

7. Institute of Energy Materials Science (IEMS) University of Shanghai for Science and Technology Shanghai 200093 China

Abstract

AbstractOptimizing charge transfer and alleviating volume expansion in electrode materials are critical to maximize electrochemical performance for energy‐storage systems. Herein, an atomically thin soft–rigid Co9S8@MoS2 core–shell heterostructure with dual cation vacancies at the atomic interface is constructed as a promising anode for high‐performance sodium‐ion batteries. The dual cation vacancies involving VCo and VMo in the heterostructure and the soft MoS2 shell afford ionic pathways for rapid charge transfer, as well as the rigid Co9S8 core acting as the dominant active component and resisting structural deformation during charge–discharge. Electrochemical testing and theoretical calculations demonstrate both excellent Na+‐transfer kinetics and pseudocapacitive behavior. Consequently, the soft–rigid heterostructure delivers extraordinary sodium‐storage performance (389.7 mA h g−1 after 500 cycles at 5.0 A g−1), superior to those of the single‐phase counterparts: the assembled Na3V2(PO4)3||d‐Co9S8@MoS2/S‐Gr full cell achieves an energy density of 235.5 Wh kg−1 at 0.5 C. This finding opens up a unique strategy of soft–rigid heterostructure and broadens the horizons of material design in energy storage and conversion.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

China Scholarship Council

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3