High‐Density Integration of Ultrabright OLEDs on a Miniaturized Needle‐Shaped CMOS Backplane

Author:

Hillebrandt Sabina12ORCID,Moon Chang‐Ki12,Taal Adriaan J.3ORCID,Overhauser Henry3,Shepard Kenneth L.3ORCID,Gather Malte C.12ORCID

Affiliation:

1. Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews North Haugh St Andrews KY16 9SS UK

2. Humboldt Centre for Nano‐ and Biophotonics Department of Chemistry University of Cologne Greinstr. 4–6 50939 Cologne Germany

3. Columbia University New York NY 10027 USA

Abstract

AbstractDirect deposition of organic light‐emitting diodes (OLEDs) on silicon‐based complementary metal–oxide–semiconductor (CMOS) chips has enabled self‐emissive microdisplays with high resolution and fill‐factor. Emerging applications of OLEDs in augmented and virtual reality (AR/VR) displays and in biomedical applications, e.g., as brain implants for cell‐specific light delivery in optogenetics, require light intensities orders of magnitude above those found in traditional displays. Further requirements often include a microscopic device footprint, a specific shape and ultrastable passivation, e.g., to ensure biocompatibility and minimal invasiveness of OLED‐based implants. In this work, up to 1024 ultrabright, microscopic OLEDs are deposited directly on needle‐shaped CMOS chips. Transmission electron microscopy and energy‐dispersive X‐ray spectroscopy are performed on the foundry‐provided aluminum contact pads of the CMOS chips to guide a systematic optimization of the contacts. Plasma treatment and implementation of silver interlayers lead to ohmic contact conditions and thus facilitate direct vacuum deposition of orange‐ and blue‐emitting OLED stacks leading to micrometer‐sized pixels on the chips. The electronics in each needle allow each pixel to switch individually. The OLED pixels generate a mean optical power density of 0.25 mW mm−2, corresponding to >40 000 cd m−2, well above the requirement for daylight AR applications and optogenetic single‐unit activation in the brain.

Funder

National Institutes of Health

Leverhulme Trust

Alexander von Humboldt-Stiftung

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3