Cryo‐Electron Microscopy Reveals Na Infiltration into Separator Pore Free‐Volume as a Degradation Mechanism in Na Anode:Liquid Electrolyte Electrochemical Cells

Author:

Matthews Kevin C.1,Rush Braxton1,Gearba Raluca1,Guo Xuelin1,Yu Guihua12,Warner Jamie H.12ORCID

Affiliation:

1. Materials Science and Engineering Program Texas Materials Institute The University of Texas at Austin 204 East Dean Keeton Street Austin TX 78712 USA

2. Walker Department of Mechanical Engineering The University of Texas at Austin 204 East Dean Keeton Street Austin TX 78712 USA

Abstract

AbstractBatteries utilizing a sodium (Na) metal anode with a liquid electrolyte are promising for affordable large‐scale energy storage. However, a deep understanding of the intrinsic degradation mechanisms is limited by challenges in accessing the buried interfaces. Here, cryogenic electron microscopy of intact electrode:separator:electrode stacks is performed and degradation and failure of symmetric Na||Na coin cells occurs through the infiltration of Na metal through the pores of the separator rather than by mechanical puncturing by dendrites is revealed. It is shown the interior structure of the cell (electrode:separator:electrode) must be preserved and deconstructing the cell into different layers for characterization results in artifacts. In intact cell stacks, minimal liquid is found between the electrodes and separator, leading to intimate electrode:separator interfaces. After electrochemical cycling, Na infiltrates into the pore free‐volume, growing through the separator to create electrical shorts and degradation. The Na infiltration occurs at interfacial regions devoid of solid‐electrolyte interphase (SEI), revealing SEI plays an important role in preventing Na from growing into the separator by being a physical barrier that the plated Na cannot penetrate. These results shed new light on the fundamental failure mechanisms in Na batteries and demonstrate the importance of preserving the cell structure and buried interfaces.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3