Triiodide Attacks the Organic Cation in Hybrid Lead Halide Perovskites: Mechanism and Suppression

Author:

Hu Junnan1ORCID,Xu Zhaojian1ORCID,Murrey Tucker L.1ORCID,Pelczer István2ORCID,Kahn Antoine1ORCID,Schwartz Jeffrey2ORCID,Rand Barry P.13ORCID

Affiliation:

1. Department of Electrical and Computer Engineering Princeton University Princeton NJ 08544 USA

2. Department of Chemistry Princeton University Princeton NJ 08544 USA

3. Andlinger Center for Energy and the Environment Princeton University Princeton NJ 08544 USA

Abstract

AbstractMolecular I2 can be produced from iodide‐based lead perovskites under thermal stress; triiodide, I3, is formed from this I2 and I. Triiodide attacks protic cation MA+‐ or FA+‐based lead halide perovskites (MA+, methylammonium; FA+, formamidinium) as explicated through solution‐based nuclear magnetic resonance (NMR) studies: triiodide has strong hydrogen‐bonding affinity for MA+ or FA+, which leads to their deprotonation and perovskite decomposition. Triiodide is a catalyst for this decomposition that can be obviated through perovskite surface treatment with thiol reducing agents. In contrast to methods using thiol incorporation into perovskite precursor solutions, no penetration of the thiol into the bulk perovskite is observed, yet its surface application stabilizes the perovskite against triiodide‐mediated thermal stress. Thiol applied to the interface between FAPbI3 and Spiro‐OMeTAD (“Spiro”) prevents oxidized iodine species penetration into Spiro and thus preserves its hole‐transport efficacy. Surface‐applied thiol affects the perovskite work function; it ameliorates hole injection into the Spiro overlayer, thus improving device performance. It helps to increase interfacial adhesion (“wetting”): fewer voids are observed at the Spiro/perovskite interface if thiols are applied. Perovskite solar cells (PSCs) incorporating interfacial thiol treatment maintain over 80% of their initial power conversion efficiency (PCE) after 300 h of 85 °C thermal stress.

Funder

U.S. Department of Energy

National Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3