Affiliation:
1. Division of Physics and Semiconductor Science Dongguk University Seoul 04620 Republic of Korea
2. School of Materials Science and Engineering Kookmin University Seoul 02707 Republic of Korea
Abstract
AbstractThe lattice oxygen mechanism (LOM) offers an efficient reaction pathway for oxygen evolution reactions (OERs) in energy storage and conversion systems. Owing to the involvement of active lattice oxygen enhancing electrochemical activity, addressing the structural and electrochemical stabilities of LOM materials is crucial. Herein, a heterostructure (Bi/BiCeO1.8H) containing abundant under‐coordinated oxygen atoms having oxygen nonbonding states is synthesized by a simple electrochemical deposition method. Given the difference in reduction potentials between Bi and Ce, partially reduced Bi nanoparticles and surrounding under‐coordinated oxygen atoms are generated in BiCeO1.8H. It is found that the lattice oxygen can be activated as a reactant of the OER when the valence state of Bi increases to Bi5+, leading to increased metal–oxygen covalency and that the oxophilic Ce3+/4+ redox couple can maintain the Bi nanoparticles and surrounding under‐coordinated oxygen atoms by preventing over‐oxidation of Bi. The anion exchange membrane water electrolyzer with Bi/BiCeO1.8H exhibits a low cell voltage of 1.79 V even at a high practical current density of 1.0 A cm−2. Furthermore, the cell performance remains significantly stable over 100 h with only a 2.2% increase in the initial cell voltage, demonstrating sustainable lattice oxygen redox.
Funder
National Research Foundation of Korea
Ministry of Science and ICT, South Korea
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献