Affiliation:
1. Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306 USA
2. Department of Nuclear Engineering University of Tennessee Knoxville TN 37996 USA
3. Scintillation Materials Research Center University of Tennessee Knoxville TN 37996 USA
4. Materials Science and Engineering University of Tennessee Knoxville TN 37996 USA
5. Materials Science and Engineering Program Florida State University Tallahassee FL 32306 USA
Abstract
AbstractScintillators, one of the essential components in medical imaging and security checking devices, rely heavily on rare‐earth‐containing inorganic materials. Here, a new type of organic‐inorganic hybrid scintillators containing earth abundant elements that can be prepared via low‐temperature processes is reported. With room temperature co‐crystallization of an aggregation‐induced emission (AIE) organic halide, 4‐(4‐(diphenylamino) phenyl)‐1‐(propyl)‐pyrindin‐1ium bromide (TPA‐PBr), and a metal halide, zinc bromide (ZnBr2), a zero‐dimensional (0D) organic metal halide hybrid (TPA‐P)2ZnBr4 with a yellowish‐green emission peaked at 550 nm has been developed. In this hybrid material, dramatically enhanced X‐ray scintillation of TPA‐P+ is achieved via the sensitization by ZnBr42−. The absolute light yield (14,700 ± 800 Photons/MeV) of (TPA‐P)2ZnBr4 is found to be higher than that of anthracene (≈13,500 Photons/MeV), a well‐known organic scintillator, while its X‐ray absorption is comparable to those of inorganic scintillators. With TPA‐P+ as an emitting center, short photoluminescence and radioluminescence decay lifetimes of 3.56 and 9.96 ns have been achieved. Taking the advantages of high X‐ray absorption of metal halides and efficient radioluminescence with short decay lifetimes of organic cations, the material design paves a new pathway to address the issues of low X‐ray absorption of organic scintillators and long decay lifetimes of inorganic scintillators simultaneously.
Funder
National Science Foundation
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献