Hierarchical Engineering of Sorption‐Based Atmospheric Water Harvesters

Author:

Song Yan1,Zeng Mengyue1,Wang Xueyang1,Shi Peiru1,Fei Minfei1,Zhu Jia1ORCID

Affiliation:

1. National Laboratory of Solid State Microstructures College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210008 P. R. China

Abstract

AbstractHarvesting water from air in sorption‐based devices is a promising solution to decentralized water production, aiming for providing potable water anywhere, anytime. This technology involves a series of coupled processes occurring at distinct length scales, ranging from nanometer to meter and even larger, including water sorption/desorption at the nanoscale, condensation at the mesoscale, device development at the macroscale and water scarcity assessment at the global scale. Comprehensive understanding and bespoke designs at every scale are thus needed to improve the water‐harvesting performance. For this purpose, a brief introduction of the global water crisis and its key characteristics is provided to clarify the impact potential and design criteria of water harvesters. Next the latest molecular‐level optimizations of sorbents for efficient moisture capture and release are discussed. Then, novel microstructuring of surfaces to enhance dropwise condensation, which is favorable for atmospheric water generation, is shown. After that, system‐level optimizations of sorbent‐assisted water harvesters to achieve high‐yield, energy‐efficient, and low‐cost water harvesting are highlighted. Finally, future directions toward practical sorption‐based atmospheric water harvesting are outlined.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference222 articles.

1. a)WHO Progress on Household Drinking Water Sanitation and Hygiene 2000–2020: Five Years into the SDGs World Health Organization Geneva Switzerland2021;

2. b)Reimagining WASH: Water Security For All UNICEF New York2021.

3. Global Water Resources: Vulnerability from Climate Change and Population Growth

4. Water footprint scenarios for 2050: A global analysis

5. Four billion people facing severe water scarcity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3