Type I Photosensitizer Targeting Glycans: Overcoming Biofilm Resistance by Inhibiting the Two‐Component System, Quorum Sensing, and Multidrug Efflux

Author:

Xia Feng‐Wei1,Guo Bing‐Wei1,Zhao Yu1,Wang Jia‐Li1,Chen Yuan1,Pan Xiu1,Li Xin1,Song Jia‐Xing1,Wan Yu1,Feng Shun1,Wu Ming‐Yu1ORCID

Affiliation:

1. Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610031 China

Abstract

AbstractStubborn biofilm infections pose serious threats to human health due to the persistence, recurrence, and dramatically magnified antibiotic resistance. Photodynamic therapy has emerged as a promising approach to combat biofilm. Nevertheless, how to inhibit the bacterial signal transduction system and the efflux pump to conquer biofilm recurrence and resistance remains a challenging and unaddressed issue. Herein, a boric acid‐functionalized lipophilic cationic type I photosensitizer, ACR‐DMP, is developed, which efficiently generates •OH to overcome the hypoxic microenvironment and photodynamically eradicates methicillin‐resistant Staphylococcus aureus (MRSA) and biofilms. Furthermore, it not only alters membrane potential homeostasis and osmotic pressure balance due to its strong binding ability with plasma membrane but also inhibits quorum sensing and the two‐component system, reduces virulence factors, and regulates the activity of the drug efflux pump attributed to the glycan‐targeting ability, helping to prevent biofilm recurrence and conquer biofilm resistance. In vivo, ACR‐DMP successfully obliterates MRSA biofilms attached to implanted medical catheters, alleviates inflammation, and promotes vascularization, thereby combating infections and accelerating wound healing. This work not only provides an efficient strategy to combat stubborn biofilm infections and bacterial multidrug resistance but also offers systematic guidance for the rational design of next‐generation advanced antimicrobial materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3