Thin‐Film Organic Heteroepitaxy

Author:

Dull Jordan T.1,He Xu1,Viereck Jonathan2,Ai Qianxiang3,Ramprasad Ritika1,Otani Maria Clara1,Sorli Jeni4,Brandt Jason W.5,Carrow Brad P.5,Tinoco Arthur D.6,Loo Yueh‐Lin4,Risko Chad3,Rangan Sylvie2,Kahn Antoine1,Rand Barry P.17ORCID

Affiliation:

1. Department of Electrical and Computer Engineering Princeton University Princeton NJ 08544 USA

2. Department of Physics and Astronomy and Laboratory for Surface Modification Rutgers University Piscataway NJ 08854 USA

3. Department of Chemistry and Center for Applied Energy Research University of Kentucky Lexington KY 40506 USA

4. Department of Chemical and Biological Engineering Princeton University Princeton NJ 08544 USA

5. Department of Chemistry Princeton University Princeton NJ 08544 USA

6. Department of Chemistry University of Puerto Rico‐Río Piedras Campus San Juan PR 00925 USA

7. Andlinger Center for Energy and the Environment Princeton University Princeton NJ 08544 USA

Abstract

AbstractIncorporating crystalline organic semiconductors into electronic devices requires understanding of heteroepitaxy given the ubiquity of heterojunctions in these devices. However, while rules for commensurate epitaxy of covalent or ionic inorganic material systems are known to be dictated by lattice matching constraints, rules for heteroepitaxy of molecular systems are still being written. Here, it is found that lattice matching alone is insufficient to achieve heteroepitaxy in molecular systems, owing to weak intermolecular forces that describe molecular crystals. It is found that, in addition, the lattice matched plane also must be the lowest energy surface of the adcrystal to achieve one‐to‐one commensurate molecular heteroepitaxy over a large area. Ultraviolet photoelectron spectroscopy demonstrates the lattice matched interface to be of higher electronic quality than a disordered interface of the same materials.

Funder

U.S. Department of Energy

National Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3