Ultralong Carrier Lifetime Exceeding 20 µs in Lead Halide Perovskite Film Enable Efficient Solar Cells

Author:

Guo Jiahao1,Wang Bingzhe2,Lu Di1,Wang Ting1,Liu Tingting1,Wang Rui1,Dong Xiyue1,Zhou Tong1,Zheng Nan3,Fu Qiang1,Xie Zengqi3,Wan Xiangjian14,Xing Guichuan2,Chen Yongsheng14,Liu Yongsheng14ORCID

Affiliation:

1. The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials Institute of Polymer Chemistry College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST) Nankai University Tianjin 300071 China

2. Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Macau 999078 China

3. Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China

4. Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China

Abstract

AbstractThe carrier lifetime is one of the key parameters for perovskite solar cells (PSCs). However, it is still a great challenge to achieve long carrier lifetimes in perovskite films that are comparable with perovskite crystals owning to the large trap density resulting from the unavoidable defects in grain boundaries and surfaces. Here, by regulating the electronic structure with the developed 2‐thiopheneformamidinium bromide (ThFABr) combined with the unique film structure of 2D perovskite layer caped 2D/3D polycrystalline perovskite film, an ultralong carrier lifetime exceeding 20 µs and carrier diffusion lengths longer than 6.5 µm are achieved. These excellent properties enable the ThFA‐based devices to yield a champion efficiency of 24.69% with a minimum VOC loss of 0.33 V. The unencapsulated device retains ≈95% of its initial efficiency after 1180 h by max power point (MPP) tracking under continuous light illumination. This work provides important implications for structured 2D/(2D/3D) perovskite films combined with unique FA‐based spacers to achieve ultralong carrier lifetime for high‐performance PSCs and other optoelectronic applications.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Science and Technology Development Fund

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3