3D Printing of Electron/Ion‐Flux Dual‐Gradient Anodes for Dendrite‐Free Zinc Batteries

Author:

He Hanna1,Zeng Li1,Luo Dan1,He Jun1,Li Xiaolong1,Guo Zaiping2ORCID,Zhang Chuhong1

Affiliation:

1. State Key Laboratory of Polymer Materials Engineering Polymer Research Institute Sichuan University Chengdu 610065 China

2. School of Chemical Engineering & Advanced Materials The University of Adelaide Adelaide SA 5005 Australia

Abstract

Abstract3D porous Zn‐metal anodes have aroused widespread interest for Zn‐ion batteries (ZIBs). Nevertheless, the notorious “top‐growth” dendrites caused by the intrinsic top‐concentrated ions and randomly distributed electrons may ultimately trigger a cell failure. Herein, an electron/ion‐flux dual‐gradient 3D porous Zn anode is reported for dendrite‐free ZIBs by adopting 3D printing technology. The 3D‐printed Zn anode with layer‐by‐layer bottom‐up attenuating Ag nanoparticles (3DP‐BU@Zn) establishes dual‐gradient electron/ion fluxes, i.e., an internal bottom‐up gradient electron flux created by bottom‐rich conductive Ag nanoparticles, and a gradient ion flux resulting from zincophilic Ag nanoparticles which pump ions toward the bottom. Meanwhile, the 3D‐printing‐enabled hierarchical porous structure and continuously conducting network endow unimpeded electron transfer and ion diffusion among the electrode, dominating a bottom‐preferential Zn deposition behavior. As a result, the 3DP‐BU@Zn symmetrical cell affords highly reversible Zn plating/stripping with an extremely small voltage hysteresis of 17.7 mV and a superior lifespan over 630 h at 1 mA cm−2 and 1 mAh cm−2. Meanwhile, the 3DP‐BU@Zn//VO2 full cell exhibits remarkable cyclic stability over 500 cycles. This unique dual‐gradient strategy sheds light on the roadmap for the next‐generation safe and durable Zn‐metal batteries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3