Affiliation:
1. Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Bionanomaterials & Translational Engineering Laboratory Beijing Key Laboratory of Bioprocess Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China
Abstract
AbstractUltrasound (US) generates toxic reactive oxygen species (ROS) by acting on sonosensitizers for cancer treatment, and the mechanical damage induced by cavitation effects under US is equally significant. Therefore, designing a novel sonosensitizer that simultaneously possesses efficient ROS generation and enhanced mechanical effects is promising. In this study, carbon‐doped zinc oxide nanoparticles (C‐ZnO) are constructed for mechano‐sonodynamic cancer therapy. The presence of carbon (C) doping optimizes the electronic structure, thereby enhancing the ROS generation triggered by US, efficiently inducing tumor cell death. On the other hand, the high specific surface area and porous structure brought about by C doping enable C‐ZnO to enhance the mechanical stress induced by cavitation bubbles under US irradiation, causing severe mechanical damage to tumor cells. Under the dual effects of sonodynamic therapy (SDT) and mechanical therapy mediated by C‐ZnO, excellent anti‐tumor efficacy is demonstrated both in vitro and in vivo, along with a high level of biological safety. This is the first instance of utilizing an inorganic nanomaterial to achieve simultaneous enhancement of ROS production and US‐induced mechanical effects for cancer therapy. This holds significant importance for the future development of novel sonosensitizers and advancing the applications of US in cancer treatment.
Funder
National Science Fund for Distinguished Young Scholars
National Natural Science Foundation of China
National Key Research and Development Program of China
Beijing Nova Program
Fundamental Research Funds for the Central Universities
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献