A Nano‐Biohybrid‐Based Bio‐Solar Cell to Regulate the Electrical Signal Transmission to Living Cells for Biomedical Application

Author:

Lim Joungpyo1,Shin Minkyu1,Ha Taehyung1,Su Wei Wen2,Yoon Jinho3,Choi Jeong‐Woo1ORCID

Affiliation:

1. Department of Chemical & Biomolecular Engineering Sogang University 35 Baekbeom‐ro Mapo‐gu Seoul 04107 Republic of Korea

2. Department of Molecular Biosciences and Bioengineering University of Hawaii at Manoa Honolulu HI 96822 USA

3. Department of Biomedical‐Chemical Engineering The Catholic University of Korea 43 Jibong‐ro, Wonmi‐gu Bucheon‐si Gyeonggi‐do 14662 Republic of Korea

Abstract

AbstractBio‐solar cells are studied as sustainable and biocompatible energy sources with significant potential for biomedical applications. However, they are composed of light‐harvesting biomolecules with narrow absorption wavelengths and weak transient photocurrent generation. In this study, a nano‐biohybrid‐based bio‐solar cell composed of bacteriorhodopsin, chlorophyllin, and Ni/TiO2 nanoparticles is developed to overcome the current limitations and verify the possibility of biomedical applications. Bacteriorhodopsin and chlorophyllin are introduced as light‐harvesting biomolecules to broaden the absorption wavelength. As a photocatalyst, Ni/TiO2 nanoparticles are introduced to generate a photocurrent and amplify the photocurrent generated by the biomolecules. The developed bio‐solar cell absorbs a broad range of visible wavelengths and generates an amplified stationary photocurrent density (152.6 nA cm−2) with a long lifetime (up to 1 month). Besides, the electrophysiological signals of muscle cells at neuromuscular junctions are precisely regulated by motor neurons excited by the photocurrent of the bio‐solar cell, indicating that the bio‐solar cell can control living cells by signal transmission through other types of living cells. The proposed nano‐biohybrid‐based bio‐solar cell can be used as a sustainable and biocompatible energy source for the development of wearable and implantable biodevices and bioelectronic medicines for humans.

Funder

Ministry of Science and ICT, South Korea

National Research Foundation of Korea

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3