Affiliation:
1. School of Physics and Electronics Hunan University Changsha 410082 P. R. China
2. State Key Laboratory of Space Power‐Sources Technology Shanghai Institute of Space Power Sources Shanghai 200245 China
3. School of Chemistry Tiangong University Tianjin 300387 China
Abstract
AbstractLithium‐rich manganese‐based layered oxides (LRMOs) are promisingly used in high‐energy lithium metal pouch cells due to high specific capacity/working voltage. However, the interfacial stability of LRMOs remains challenging. To address this question, a novel armor‐like cathode electrolyte interphase (CEI) model is proposed for stabilizing LRMO cathode at 4.9 V by exploring partially fluorinated electrolyte formulation. The fluoroethylene carbonate (FEC) and tris (trimethylsilyl) borate (TMSB) in formulated electrolyte largely contribute to the formation of 4.9 V armor‐like CEI with LiBxOy and LixPOyFz outer layer and LiF‐ and Li3PO4‐rich inner part. Such CEI effectively inhibits lattice oxygen loss and facilitates the Li+ migration smoothly for guaranteeing LRMO cathode to deliver superior cycling and rate performance. As expected, Li||LRMO batteries with such electrolyte achieve capacity retention of 85.7% with high average Coulomb efficiency (CE) of 99.64% after 300 cycles at 4.8 V/0.5 C, and even obtain capacity retention of 87.4% after 100 cycles at higher cut‐off voltage of 4.9 V. Meanwhile, the 9 Ah‐class Li||LRMO pouch cells with formulated electrolyte show over thirty‐eight stable cycling life with high energy density of 576 Wh kg−1 at 4.8 V.
Funder
National Natural Science Foundation of China
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献