Universal Formation of Single Atoms from Molten Salt for Facilitating Selective CO2 Reduction

Author:

Hao Qi12,Zhen Cheng34,Tang Qi56,Wang Jiazhi7,Ma Peiyu8,Wu Junxiu9ORCID,Wang Tianyang2,Liu Dongxue10,Xie Linxuan2,Liu Xiao2,Gu M. Danny4,Hoffmann Michael R.11,Yu Gang12,Liu Kai2,Lu Jun9ORCID

Affiliation:

1. School of Materials Science & Engineering Zhejiang University Hangzhou Zhejiang 310027 China

2. School of Engineering Westlake University Hangzhou Zhejiang 310030 China

3. Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen 518055 China

4. Eastern Institute for Advanced Study Eastern Institute of Technology Ningbo Zhejiang 315200 China

5. State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China

6. School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China

7. Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China

8. Key Laboratory of Precision and Intelligent Chemistry National Synchrotron Radiation Laboratory iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) University of Science and Technology of China Hefei Anhui 230026 China

9. College of Chemical and Biological Engineering Zhejiang University Hangzhou Zhejiang 310027 China

10. Key Laboratory of Automobile Materials Ministry of Education and College of Materials Science and Engineering Jilin University Changchun Jilin 130022 China

11. Department of Environmental Science and Engineering California Institute of Technology 1200 E California Blvd Pasadena CA 91125 USA

12. Merging Contaminants Research Center Beijing Normal University Zhuhai Guangdong 519087 China

Abstract

AbstractClarifying the formation mechanism of single‐atom sites guides the design of emerging single‐atom catalysts (SACs) and facilitates the identification of the active sites at atomic scale. Herein, a molten‐salt atomization strategy is developed for synthesizing zinc (Zn) SACs with temperature universality from 400 to 1000/1100 °C and an evolved coordination from Zn‐N2Cl2 to Zn‐N4. The electrochemical tests and in situ attenuated total reflectance‐surface‐enhanced infrared absorption spectroscopy confirm that the Zn‐N4 atomic sites are active for electrochemical carbon dioxide (CO2) conversion to carbon monoxide (CO). In a strongly acidic medium (0.2 m K2SO4, pH = 1), the Zn SAC formed at 1000 °C (Zn1NC) containing Zn‐N4 sites enables highly selective CO2 electroreduction to CO, with nearly 100% selectivity toward CO product in a wide current density range of 100–600 mA cm−2. During a 50 h continuous electrolysis at the industrial current density of 200 mA cm−2, Zn1NC achieves Faradaic efficiencies greater than 95% for CO product. The work presents a temperature‐universal formation of single‐atom sites, which provides a novel platform for unraveling the active sites in Zn SACs for CO2 electroreduction and extends the synthesis of SACs with controllable coordination sites.

Funder

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3