Electrochemically Controlled Hydrogels with Electrotunable Permeability and Uniaxial Actuation

Author:

Benselfelt Tobias1ORCID,Shakya Jyoti1ORCID,Rothemund Philipp2ORCID,Lindström Stefan B.3ORCID,Piper Andrew1ORCID,Winkler Thomas E.4ORCID,Hajian Alireza1ORCID,Wågberg Lars1ORCID,Keplinger Christoph256ORCID,Hamedi Mahiar Max1ORCID

Affiliation:

1. Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry Biotechnology and Health KTH Royal Institute of Technology Stockholm 100 44 Sweden

2. Robotic Materials Department Max Planck Institute for Intelligent Systems 70569 Stuttgart Germany

3. Department of Management and Engineering Division of Solid Mechanics Linköping University Linköping 58183 Sweden

4. Institute of Microtechnology & Center of Pharmaceutical Engineering Technische Universität Braunschweig 38106 Braunschweig Germany

5. Paul M. Rady Department of Mechanical Engineering University of Colorado Boulder CO 80309 USA

6. Materials Science and Engineering Program University of Colorado Boulder CO 80309 USA

Abstract

AbstractThe unique properties of hydrogels enable the design of life‐like soft intelligent systems. However, stimuli‐responsive hydrogels still suffer from limited actuation control. Direct electronic control of electronically conductive hydrogels can solve this challenge and allow direct integration with modern electronic systems. An electrochemically controlled nanowire composite hydrogel with high in‐plane conductivity that stimulates a uniaxial electrochemical osmotic expansion is demonstrated. This materials system allows precisely controlled shape‐morphing at only −1 V, where capacitive charging of the hydrogel bulk leads to a large uniaxial expansion of up to 300%, caused by the ingress of ≈700 water molecules per electron–ion pair. The material retains its state when turned off, which is ideal for electrotunable membranes as the inherent coupling between the expansion and mesoporosity enables electronic control of permeability for adaptive separation, fractionation, and distribution. Used as electrochemical osmotic hydrogel actuators, they achieve an electroactive pressure of up to 0.7 MPa (1.4 MPa vs dry) and a work density of ≈150 kJ m−3 (2 MJ m−3 vs dry). This new materials system paves the way to integrate actuation, sensing, and controlled permeation into advanced soft intelligent systems.

Funder

Knut och Alice Wallenbergs Stiftelse

Olle Engkvists Stiftelse

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ionic fuel-powered hydrogel actuators for soft robotics;Journal of Colloid and Interface Science;2025-01

2. Recent advances of biomass-based smart hydrogel Actuators: A review;Chemical Engineering Journal;2024-10

3. Structure-properties relationships of defined CNF single-networks crosslinked by telechelic PEGs;Carbohydrate Polymers;2024-09

4. Bioinspired electronics for intelligent soft robots;Nature Reviews Electrical Engineering;2024-08-05

5. Soft Actuators and Actuation: Design, Synthesis, and Applications;Macromolecular Rapid Communications;2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3