Bandgap Engineering of Melon using Highly Reduced Graphene Oxide for Enhanced Photoelectrochemical Hydrogen Evolution

Author:

Ashraf Muhammad1,Ali Roshan2,Khan Ibrahim3,Ullah Nisar1,Ahmad Muhammad Sohail45,Kida Tetsuya456,Wooh Sanghyuk3,Tremel Wolfgang7ORCID,Schwingenschlögl Udo2,Tahir Muhammad Nawaz18

Affiliation:

1. Chemistry Department King Fahd University of Petroleum & Minerals Dharan 31261 Kingdom of Saudi Arabia

2. Physical Science and Engineering Division (PSE) King Abdullah University of Science and Technology (KAUST) Thuwal 23955–6900 Saudi Arabia

3. School of Chemical Engineering and Materials Science Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu Seoul 06974 Republic of Korea

4. International Research Organization for Advanced Science and Technology Kumamoto University 2‐39‐1 Kurokami Kumamoto 860‐8555 Japan

5. Institute of Industrial Nanomaterials Kumamoto University 2‐39‐1 Kurokami Kumamoto 860‐8555 Japan

6. Department of Advanced Science and Technology Kumamoto University 2‐39‐1 Kurokami, Chuo‐ku Kumamoto 860–8555 Japan

7. Chemistry Department Johannes Gutenberg‐University Duesbergweg 10–14 D–55128 Mainz Germany

8. Interdisciplinary Research Center for Hydrogen and Energy Storage King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia

Abstract

AbstractThe uncondensed form of polymeric carbon nitrides (PCN), generally known as melon, is a stacked 2D structure of poly(aminoimino)heptazine. Melon is used as a photocatalyst in solar energy conversion applications, but suffers from poor photoconversion efficiency due to weak optical absorption in the visible spectrum, high activation energy, and inefficient separation of photoexcited charge carriers. Experimental and theoretical studies are reported to engineer the bandgap of melon with highly reduced graphene oxide (HRG). Three HRG@melon nanocomposites with different HRG:melon ratios (0.5%, 1%, and 2%) are prepared. The 1% HRG@melon nanocomposite shows higher photocurrent density (71 µA cm−2) than melon (24 µA cm−2) in alkaline conditions. The addition of a hole scavenger further increases the photocurrent density to 630 µA cm−2 relative to the reversible hydrogen electrode (RHE). These experimental results are validated by calculations using density functional theory (DFT), which revealed that HRG results in a significant charge redistribution and an improved photocatalytic hydrogen evolution reaction (HER).

Funder

King Abdullah University of Science and Technology

King Fahd University of Petroleum and Minerals

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3