Ultrathin Van der Waals Lanthanum Oxychloride Dielectric for 2D Field‐Effect Transistors

Author:

Li Linyang1,Dang Weiqi2,Zhu Xiaofei1,Lan Haihui13,Ding Yiran4,Li Zhu‐An2,Wang Luyang1,Yang Yuekun2,Fu Lei145,Miao Feng2,Zeng Mengqi1ORCID

Affiliation:

1. College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China

2. National Laboratory of Solid State Microstructures School of Physics Institute of Brain‐Inspired Intelligence Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China

3. Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA

4. The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 China

5. Institute of Molecular Medicine Renmin Hospital of Wuhan University Wuhan 410013 China

Abstract

AbstractDownsizing silicon‐based transistors can result in lower power consumption, faster speeds, and greater computational capacity, although it is accompanied by the appearance of short‐channel effects. The integration of high‐mobility 2D semiconductor channels with ultrathin high dielectric constant (high‐κ) dielectric in transistors is expected to suppress the effect. Nevertheless, the absence of a high‐κ dielectric layer featuring an atomically smooth surface devoid of dangling bonds poses a significant obstacle in the advancement of 2D electronics. Here, ultrathin van der Waals (vdW) lanthanum oxychloride (LaOCl) dielectrics are successfully synthesized by precisely controlling the growth kinetics. These dielectrics demonstrate an impressive high‐κ value of 10.8 and exhibit a remarkable breakdown field strength (Ebd) exceeding 10 MV cm−1. Remarkably, the conventional molybdenum disulfide (MoS2) field‐effect transistor (FET) featuring a dielectric made of LaOCl showcases an almost negligible hysteresis when compared to FETs employing alternative gate dielectrics. This can be attributed to the flawlessly formed vdW interface and excellent compatibility established between LaOCl and MoS2. These findings will motivate the further exploration of rare‐earth oxychlorides and the development of more‐than‐Moore nanoelectronic devices.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3