Generation of 13.9‐mJ Terahertz Radiation from Lithium Niobate Materials

Author:

Wu Xiaojun123ORCID,Kong Deyin12,Hao Sibo1,Zeng Yushan4,Yu Xieqiu4,Zhang Baolong5,Dai Mingcong1,Liu Shaojie1,Wang Jiaqi1,Ren Zejun1,Chen Sai1,Sang Jianhua4,Wang Kang4,Zhang Dongdong4,Liu Zhongkai67,Gui Jiayan4,Yang Xiaojun4,Xu Yi4,Leng Yuxin4,Li Yutong5,Song Liwei4,Tian Ye4,Li Ruxin4

Affiliation:

1. School of Electronic and Information Engineering, and School of Cyber Science and Technology Beihang University Beijing 100191 China

2. Zhangjiang Laboratory 100 Haike Road Shanghai 201210 China

3. Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China

4. State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra‐intense Laser Science Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences Shanghai 201800 China

5. Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China

6. School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China

7. ShanghaiTech Laboratory for Topological Physics Shanghai 201210 China

Abstract

AbstractExtremely strong‐field terahertz (THz) radiation in free space has compelling applications in nonequilibrium condensed matter state regulation, all‐optical THz electron acceleration and manipulation, THz biological effects, etc. However, these practical applications are constrained by the absence of high‐intensity, high‐efficiency, high‐beam‐quality, and stable solid‐state THz light sources. Here, the generation of single‐cycle 13.9‐mJ extreme THz pulses from cryogenically cooled lithium niobate crystals and a 1.2% energy conversion efficiency from 800 nm to THz are demonstrated experimentally using the tilted pulse‐front technique driven by a home‐built 30‐fs, 1.2‐Joule Ti:sapphire laser amplifier. The focused peak electric field strength is estimated to be 7.5 MV cm−1. A record of 1.1‐mJ THz single‐pulse energy at a 450 mJ pump at room temperature is produced and observed that the self‐phase modulation of the optical pump can induce THz saturation behavior from the crystals in the substantially nonlinear pump regime. This study lays the foundation for the generation of sub‐Joule THz radiation from lithium niobate crystals and will inspire more innovations in extreme THz science and applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3