Engineering Quantum Light Sources with Flat Optics

Author:

Ma Jinyong1,Zhang Jihua12,Horder Jake3,Sukhorukov Andrey A.1,Toth Milos3,Neshev Dragomir N.1,Aharonovich Igor3ORCID

Affiliation:

1. ARC Centre of Excellence for Transformative Meta‐Optical Systems (TMOS) Department of Electronic Materials Engineering Research School of Physics Australian National University Canberra 2600 Australia

2. Songshan Lake Materials Laboratory Dongguan Guangdong 523808 P. R. China

3. ARC Centre of Excellence for Transformative Meta‐Optical Systems (TMOS) School of Mathematical and Physical Sciences University of Technology Sydney Ultimo 2007 Australia

Abstract

AbstractQuantum light sources are essential building blocks for many quantum technologies, enabling secure communication, powerful computing, and precise sensing and imaging. Recent advancements have witnessed a significant shift toward the utilization of “flat” optics with thickness at subwavelength scales for the development of quantum light sources. This approach offers notable advantages over conventional bulky counterparts, including compactness, scalability, and improved efficiency, along with added functionalities. This review focuses on the recent advances in leveraging flat optics to generate quantum light sources. Specifically, the generation of entangled photon pairs through spontaneous parametric down‐conversion in nonlinear metasurfaces, and single photon emission from quantum emitters including quantum dots and color centers in 3D and 2D materials are explored. The review covers theoretical principles, fabrication techniques, and properties of these sources, with particular emphasis on the enhanced generation and engineering of quantum light sources using optical resonances supported by nanostructures. The diverse application range of these sources is discussed and the current challenges and perspectives in the field are highlighted.

Funder

Office of Naval Research Global

Australian Research Council

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3